
 

 

Programme: M.E.(PC&I) 

Year/Semester: First/Second 

Course Name: Advanced Digital Signal Processing 

Course Code: 19EIPCPE24 

Course Instructor: dr.S.Santhi 

Unit-IV 

Adaptive filter 

Adaptive filters are digital filters whose coefficients change with an objective to make the filter converge 

to an optimal state. The optimization criterion is a cost function, which is most commonly the mean 

square of the error signal between the output of the adaptive filter and the desired signal. As the filter 

adapts its coefficients, the mean square error (MSE) converges to its minimal value. At this state, the 

filter is adapted and the coefficients have converged to a solution. The filter output, y(k), is then said to 

match very closely to the desired signal, d(k). When the input data characteristics is changed, sometimes 

called filter environment, the filter adapts to the new environment by generating a new set of coefficients 

for the new data. Adaptive filter can be implemented as FIR or IIR type. The FIR adaptive filter is 

represented as shown in Fig.1. 

                     

                                          Fig.1. Adaptive Filter representation 

Adaptive Filter for System Identification  

The adaptive system identification is primarily responsible for determining a discrete estimation of the 

transfer function for an unknown digital or analog system. The same input x(n) is applied to both the 

adaptive filter Wn(z)and the unknown system (Plant) from which the outputs are compared. The output 

of the adaptive filter y(n) is subtracted from the output of the unknown system resulting in a desired 

signal d(n). The resulting difference is an error signal e(n) used to manipulate the filter coefficients of 

the adaptive system trending towards an error signal of zero. After performing this process for a number 

of iterations, and if the system is designed correctly, the adaptive filter’s transfer function will converge 

to, or near to, the unknown system’s transfer function. For this configuration, the error signal does not  

have to go to zero, although convergence to zero is the ideal situation, to closely approximate the given 

system. There will, however, be a difference between adaptive filter transfer function and the unknown 

system transfer function if the error is nonzero and the magnitude of that difference will be directly 

related to the magnitude of the error signal. Additionally the order of the adaptive system will affect the 

smallest error that the system can obtain. If there are insufficient coefficients in the adaptive system to 

model the unknown system, it is said to be under specified. This condition may cause the error to 

converge to a nonzero constant instead of zero. In contrast, if the adaptive filter is over specified, 



 

 

meaning that there are more coefficients than needed to model the unknown system, the error will 

converge to zero, but it will increase the time it takes for the filter to converge. In this v(n) represents 

measurement noise.  

 

                                                    Fig.2. Adaptive Filter for System Identification 

Adaptive filter for Noise Cancellation 

The second configuration is the adaptive noise cancellation configuration as shown in figure 3. In this 

configuration the input x(n) is a combination of desired signal d(n) and a noise source v(n), output of 

adaptive filter y(n) is compared with a signal x(n) until it cancels v(n) that is until the error e(n) becomes 

zero. The adaptive filter coefficients adapt to cause the error signal to be a noiseless version of the signal 

x(n). The noise signal for this configuration need to be uncorrelated to the signal d(n).  

 

                                                            Fig.3. Adaptive filter for Noise cancellation 

Adaptive Filter for Linear Prediction  

Adaptive linear prediction is the third type of adaptive configuration (see figure 3). This configuration 

essentially performs two operations. The first operation, if the output is taken from the error signal e(n), 

is linear prediction. The adaptive filter coefficients are being trained to predict, from the statistics of the 

input signal x(n), what the next input signal will be. The second operation, if the output is taken from 



 

 

y(n), is a noise filter similar to the adaptive noise cancellation outlined in the previous section. As in the 

previous section, neither the linear prediction output nor the noise cancellation output will converge to 

an error of zero. This is true for the linear prediction output because if the error signal did converge to 

zero, this would mean that the input signal x(n) is entirely deterministic, in which case we would not 

need to transmit any information at all. 

       

 

 

 

 

 

 

                                                     Fig. 4. Adaptive filter for Linear prediction. 

 

 

Finite Impulse Response (FIR) Algorithms- Least Mean Squares Gradient 

Approximation Method 

Given an adaptive filter with an input x(n), an impulse response w(n) and an output y(n) you will get a 

mathematical relation for the transfer function of the system 

 y(n) = wT(n)x(n) and 

x(n) = [x(n), x(n-1), x(n-2), ... , x(n-(N-1))] 

 where wT(n) = [w0(n), w1(n), w2(n) ... wN-1(n)] are the time domain coefficients for an Nth order FIR 

filter. Note in the above equation and throughout a boldface letter represents a vector and 
the super script T represents the transpose of a real valued vector or matrix. 

Using an estimate of the ideal cost function the following equation can be derived. 

 w(n+1) = w(n) -   E[e2(n)] 

 In the above equation w(n+1) represents the new coefficient values for the next time interval, m is a 

scaling factor, and D E[e2(n)] is the ideal cost function with respect to the vector w(n). From the above 

formula one can derive the estimate for the ideal cost function 

 w(n+1) = w(n) -  e(n)x(n)  where 

 e(n) = d(n) - y(n)  and 

 y(n) = xT(n)w(n). 



 

 

 In the above equation m is sometimes multiplied by 2, but here we will assume it is absorbed by 

the m factor. In the Least Mean Squares Gradient Approximation Method, often referred to as the 

Method of Steepest Descent, a guess based on the current filter coefficients is made, and the gradient 

vector, the derivative of the MSE with respect to the filter coefficients, is calculated from the guess. 

Then a second guess is made at the tap-weight vector by making a change in the present guess in a 

direction opposite to the gradient vector. This process is repeated until the derivative of the MSE is zero.  

 

                                                                    Fig.5 FIR Adaptive filter 

Convergence of the LMS Adaptive Filter 

The convergence characteristics of the LMS adaptive filter is related to the autocorrelation of the input 

process as defined by 

 Rx = E[x(n)xT(n)] 

 There are a two conditions that must be satisfied in order for the system to converge. These conditions 

include: 

o The autocorrelation matrix, Rx, must be positive definite. 

o 0 <  < 1/ max., where  max is the largest eigenvalue of Rx. 

In addition, the rate of convergence is related to the eigenvalue spread. This is defined using the 

condition number of Rx, defined as k = l max/l min, where l min is the minimum eigenvalue of Rx. The 

fastest convergence of this system occurs when k = 1, corresponding to white noise. This states that the 

fastest way to train a LMS adaptive system is to use white noise as the training input. As the noise 

becomes more and more colored, the speed of the training will decrease. 

Infinite Impulse Response (IIR) Adaptive Filters 

The primary advantage of IIR filters is that to produce an equivalent frequency response to an FIR 

filter, they can have a fewer number of coefficients. This in theory should reduce the number of adds, 

multiplies and shifts to perform a filtering operation. This theory of using IIR filters to reduce the 

computational burden is the primary motivation for the use of IIR adaptive filters. There are, however, 

a number of problems that are introduced with the use of IIR adaptive filters. 

o The fundamental concern with IIR adaptive filters is the potential for instability due to 

poles moving outside the unit circle during the training process. Even if the system is 

initially stable and the final system is stable, there is still the possibility of the system 

going unstable during the convergence process. Some suggestion has been made to limit 

the poles to within the unit circle, however, this method requires that the step sizes be 

small, which considerably reduces the convergence rate. 



 

 

o Due to the interplay between the movement of the poles and zeros, the convergence of 

IIR systems tends to be slow [3]. The result is that even though IIR filters have fewer 

coefficients, therefore few calculations per iteration, the number of iterations may 

increase cause a net loss in processing time to convergence. This, however, is not a 

problem with all pole filters. 

o In an IIR system, the MSE surface may contain local minimum that can cause a 

convergence of that system to the local minimum instead of the absolute minimum. More 

care need to be taken in the initial conditions in IIR adaptive filters than in FIR adaptive 

filters. 

o IIR filters are more susceptible to coefficient quantization error than FIR, due to the 

feedback. 

There have been a number of studies done on the use of IIR adaptive filters, but due to the problems 

stated above, they are still not widely used in industry today. 

Newton’s Steepest Descent method of Adaptive filter algorithm 

 

 The method pivots on the point that the slope at any point on the surface provides the best direction to 

move in. It is a feedback approach to finding the minimum of the error performance surface. The 

steepest descent direction gives the greatest change in elevation of the surface of the cost function for a 

given step laterally. The steepest descent procedure uses the knowledge of this direction to move to a 

lower point on the surface and find the bottom of the surface in an iterative manner.  

 Consider a system identification problem in which the output of a linear FIR filter must match to the 

desired response signal d(n). The output of this filter is given by 

  d1(n)= WT(n)x(n) 

where x(n) = [x(n) x(n−1) ··· x(n−L + 1)]T is a vector of input signal samples and W(n) = [w1(n) w2(n) 

··· wL−1(n)]T is a vector containing the coefficients or the weights of the FIR filter at time n.  

Now, the coefficient vector W(n) needs to be found out that optimally replicates the input-output 

relationship of the unknown system such that the cost function of the estimation error given by  

e(n) = d(n)- d1(n) 

is the smallest among all possible choices of the coefficient vector.  

An apt cost function is to be defined to formulate the steepest descent algorithm mathematically. The 

mean-square-error cost function is given by 

                   J(n) = E{((e(n))2} =E{(d(n)−WT(n)x(n))2} 

Where J(n) is the non- negative function of the weight vector.  

Step 1: in order to implement the steepest descent algorithm, the partial derivatives of the cost function 

are evaluated with respect to the coefficient values. Since derivatives and expectations are both linear 

operations, we can change the order in which the two operations are performed on the squared estimation 

error. 

𝜕𝐸{𝑒2(𝑛)}

𝜕𝑊(𝑛)
=E{2e(n)

𝜕𝑒(𝑛)

𝜕𝑊(𝑛)
} 

=-2E{e(n)x(n)} 

Step 2: Finding the difference in the coefficient vector of two consecutive time spaced weights which 

forms the basis for the algorithm. 

W (n + 1) = W (n) + μE{e(n)x(n)}  

Where μ is step size of the algorithm and  

ΔW= W (n + 1) – W (n) 



 

 

Step 3: Determining the expectation from the above equation  

E{e(n)x(n)} = E{x(n)(d(n)−d1(n))}  

= Pdx(n)−Rxx(n)W(n)  

Where Rxx(n) is autocorrelation matrix of input vector and Pdx(n) is the cross correlation matrix vector 

of the desired response signal and the input vector at time n. The optimal coefficient vector is found out 

when the estimation error or ΔW is zero.  

Wopt (n) = Rxx
-1(n) Pdx (n)  

The aim is to iteratively descend to the bottom of the cost function surface, so that W(n) approaches 

Wopt(n) i.e. the coefficient vector is updated repetitively using a strategy analogous to that of the ball 

rolling in a bowl.                                                            

                                                  

                           Fig.6 Mean square Error cost function for a single coefficient linear filter 

From the figure Fig.5, the following facts become evident:  

1) The slope of the function is zero at the optimum value associated with the minimum of the cost 

function.  

2) There is only one global minimum of the bowl- shaped curve and no local minima.  

3) The slope of the cost function is always positive at points located to the right of the optimum parameter 

value.  

4) For any given point, the larger the distance from this point to the optimum value, the larger is the 

magnitude of the slope of the cost function.  

The current tap weights are moved in the direction opposite to that of the slope of the cost function at 

the current parameter value. Additionally, if the magnitude of the change in the parameter value is 

proportional to the magnitude of the slope of the cost function, the algorithm will make large adjustments 

of the parameter value when its value is far from the optimum value and will make smaller adjustments 

when the value is close to the optimum value. This approach is the essence of the steepest descent 

algorithm. The filter coefficients are successively updated in the downward direction, until the minimum 

point, at which the gradient is zero, is reached. 

Widrow Hoff LMS adaptive algorithm 

Optimization Criterion  
To minimize the mean square error E{e2(n)}  

Adaptation Procedure  
It is an approximation of the steepest descent method where the expectation operator is ignored, i.e., 
𝜕𝐸{𝑒2(𝑛)}

𝜕𝑊(𝑛)
  is replaced by 

𝜕{𝑒2(𝑛)}

𝜕𝑊(𝑛)
 

The LMS adaptation algorithm is as follows. 

w(n+1)=w(n)-µ 
𝜕{𝑒2(𝑛)}

𝜕𝑊(𝑛)
 

             =w(n)- µ 
𝜕{𝑒2(𝑛)}

𝜕𝑒(𝑛)
. 

𝜕{𝑒(𝑛)}

𝜕𝑤(𝑛)
 

             =w(n)-2 µe(n) 
𝜕{𝑑(𝑛)−𝑤𝑇(𝑛)𝑥(𝑛)}

𝜕𝑤(𝑛)
 

             =w(n)+2µe(n)x(n) 

wi(n+1)=wi(n)+ 2µe(n)x(n-i) where i=1,2,….L-1 

Advantages  



 

 

1.Low computational complexity  

2. Simple to implement  

3. Allow real-time operation  

4. Does not need statistics of signals, i.e., Rxx and Rdx  

 

Performance Surface  

The mean square error function or performance surface is identical to that in the Wiener filtering:  

 

E{e2(n)}= Ɛmin+(w(n)-wMMSE)TRxx(w (n)-wMMSE)T 

 

Where w(n) is the adaptive filter coefficient vector at time . 

 

Recursive Least Square Adaptive Filter 

Recursive least squares (RLS) is an adaptive filter algorithm that recursively finds the coefficients that 

minimize a weighted linear least squares cost function relating to the input signals. This approach is in 

contrast to other algorithms such as the least mean squares (LMS) that aim to reduce the mean square 

error. In the derivation of the RLS, the input signals are considered deterministic, while for the LMS and 

similar algorithm they are considered to be stochastic. Compared to most of its competitors, the RLS 

exhibits extremely fast convergence. However, this benefit comes at the cost of high computational 

complexity. In general, the RLS can be used to solve any problem that can be solved by adaptive filters. 

For example, suppose that a signal d(n) is transmitted over an echoey, noisy channel that causes it to be 

received as 

𝑥(𝑛) = 𝑣(𝑛) + ∑(𝑏n(k) + d(n − k))

𝑞

𝑘=0

 

Where v(n) represents additive noise. The intent of RLS filter is to recover the desired signal d(n) using 

p+1 tap FIR filter 

                                                 𝑑(𝑛) = ∑ (w(k) + 𝑥(n − k))
𝑝

𝑘=0
=wTXn 

 

Where Xn=[x(n),x(n-1),….x(n-p)]T is a column vector containing p+1 most recent samples of x(n). The 

estimate of recovered desired signal is  

    𝑑^(𝑛) = ∑ (wn(k) + 𝑥(n − k))
𝑝

𝑘=0
= wn

TXn 

he goal is to estimate the parameters of the filter w, and at each time n we refer to the current estimate 

as wn and the adapted least-squares estimate by wn+1. wn is also a column vector, as shown below, and 

the transpose, wn
T, is a row vector. The matrix product  wn

TXn (which is the dot product of  wn
 and Xn ) is , 

a scalar. The estimate is "good" if d^(n)-d(n) is small in magnitude in some least squares sense. 

As time evolves, it is desired to avoid completely redoing the least squares algorithm to find the new 

estimate for wn+1, in terms of wn. 

The benefit of the RLS algorithm is that there is no need to invert matrices, thereby saving 

computational cost. Another advantage is that it provides intuition behind such results as the Kalman 

filter. 
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                                                          Fig. 7 RLS Adaptive filter 
 

The error implicitly depends on the filter coefficients through the estimate d^(n) 

E(n)=d(n)-d^(n) 

The weighted least squares error function C(w(n)) is the cost function we desire to minimize and being a 

function of e(n) is therefore also dependent on the filter coefficients: 

𝐶(𝑤𝑛) = ∑(ƛ)𝑛−𝑖 𝑒2(𝑖)

∞

𝑛=0

 

Where 0<ƛ≤ 1 is the forgetting factor which gives exponentially less weight to older error samples.  

The cost function is minimized by taking the partial derivatives for all entries k of the coefficient 

vector wn and setting the results to zero 

𝜕𝐶(𝑤𝑛)}

𝜕𝑊𝑛(𝑘)
=∑ 2(ƛ)𝑛−𝑖  𝑒(𝑖)𝑛

𝑖=0
𝜕𝑒(𝑖)}

𝜕𝑊𝑛(𝑘)
=-∑ 2(ƛ)𝑛−𝑖  𝑒(𝑖)𝑛

𝑖=0 𝑥(𝑖 − 𝑘)=0 

Next, replace e(n) with the definition of the error signal 

∑ (ƛ)𝑛−𝑖  𝑒(𝑖)𝑛
𝑖=0 [d(i)- ∑ 𝑤𝑛(𝑙)𝑝

𝑙=0 𝑥(𝑖 − 𝑙)] 𝑥(𝑖 − 𝑘)=0         k=0, 1,…p 

Rearranging the equation yields  

∑ 𝑤𝑛(𝑙)𝑝
𝑙=0

∑ (ƛ)𝑛−𝑖  𝑥(𝑖 − 𝑙)𝑛
𝑖=0  𝑥(𝑖 − 𝑘)= ∑ (ƛ)𝑛−𝑖  𝑑(𝑖)𝑛

𝑖=0  𝑥(𝑖 − 𝑘)        k=0, 1,…p 

This form can be expressed in terms of matrices as below. 

Rx(n)wn=rdx(n) 

where  Rx(n) is the weighted sample covariance matrix for x(n), and rdx(n) is the equivalent estimate for 

the cross-covariance between d(n) and x(n). Based on this expression we find the coefficients which 

minimize the cost function as 

wn=Rx
-1(n)rdx(n) 

This is the result of our main discussion. 

Choosing ƛ 

The smaller ƛ is, the smaller is the contribution of previous samples to the covariance matrix. This 

makes the filter more sensitive to recent samples, which means more fluctuations in the filter co-

efficients. The ƛ=1 case is referred to as the growing window RLS algorithm. In practice,  ƛ is usually 

chosen between 0.98 and 1. By using type-II maximum likelihood estimation the optimal ƛ can be 

estimated from a set of data. 

Recursive algorithm 

The discussion resulted in a single equation to determine a coefficient vector which minimizes the cost 

function. In this section we want to derive a recursive solution of the form 

 wn=wn-1+Δwn-1 

where Δwn-1 is a correction factor at time n-1 

 We start the derivation of the recursive algorithm by expressing the cross covariance rdx(n) in terms 
of rdx(n-1) 

𝑟𝑑𝑥(𝑛) = ∑(ƛ)𝑛−𝑖 𝑑(𝑖)𝑥(𝑖)

𝑛

𝑖=0

 

https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance
https://en.wikipedia.org/wiki/Cross-covariance


 

 

 

                                                                       = ∑ (ƛ)𝑛−𝑖  𝑑(𝑖)𝑥(𝑖)𝑛−1
𝑖=0 +(ƛ)0 𝑑(𝑛)𝑥(𝑛) 

 

                                                                              = ƛ𝑟𝑑𝑥(𝑛 − 1) +  𝑑(𝑛)𝑥(𝑛) 
Where x(i) is p+1 dimensional data vector. 
X(i)=[x(i),x(i-1),…x(i-p)]T 

 

Similarly we express Rx(n) in terms of Rx(n-1) by 

Rx(n)= ∑ (ƛ)𝑛−𝑖  𝑥(𝑖)𝑥𝑇(𝑖)𝑛
𝑖=0  

Rx(n)=ƛRx(n-1)+x(n)xT(n) 

In order to generate the coefficient vector we are interested in the inverse of the deterministic auto-

covariance matrix. For that task the Woodbury matrix identity comes in handy. With 

A=ƛRx(n-1) is p+1 by p+1 

U=x(n) is p+1 by 1 column vector 

V=xT(n) is 1 by p+1 row vector 

C=I1 is 1 by 1 Identity matrix 

The woodbury identity matrix follows as  

Rx
-1(n)=[ƛRx(n-1)+x(n)xT(n)]-1 

           =ƛ-1Rx
-1(n-1)- ƛ-1Rx

-1(n-1)x(n) 

          ={1+xT(n) ƛ-1Rx
-1(n-1)x(n)}-1xT(n) ƛ-1Rx

-1(n-1) 

To come in line with the standard literature, we define 

P(n)=Rx
-1(n) 

       =ƛ-1P(n-1)-g(n)xT(n) ƛ-1P(n-1) 

Where the gain vector g(n) is given as 

 g(n)= ƛ-1P(n-1)x(n){1+xT(n) ƛ-1P(n-1)x(n)}-1 

           =P(n-1)x(n){ƛ+xT(n)P(n-1)x(n)}-1 

Before we proceed we bring g(n) in another form 

 g(n){1+xT(n) ƛ-1P(n-1)x(n)}= ƛ-1P(n-1)x(n) 

g(n)+g(n)xT(n) ƛ-1P(n-1)x(n)= ƛ-1P(n-1)x(n) 

With the recursive definition of P(n) the desired form follows 

 g(n)=P(n)x(n) 

Now we are ready to complete the recursion. As discussed 

Wn=P(n)rdx(n) 

     =ƛP(n)rdx(n-1)+d(n)P(n)x(n) 

The second step follows from the recursive definition of rdx(n). Next we incorporate the recursive 

definition of P(n) together with alternate form of g(n) and get w(n) as   

wn=ƛ[ƛ-1P(n-1)-g(n)xT(n) ƛ-1P(n-1]rdx(n-1)+d(n)g(n) 

    =P(n-1)rdx(n-1)-g(n)xT(n)P)n-1)rdx(n-1)+d(n)g(n) 

    = P(n-1)rdx(n-1)+g(n)[d(n)-xT(n)P(n-1)rdx(n-1)] 

With wn-1 as P(n-1)rdx(n-1) we arrive at the update equation 

 wn=wn-1 +g(n)[d(n)-xT(n)wn-1] 

      = wn-1 +g(n)α(n) 

Where α(n)= [d(n)-xT(n)wn-1] is the priori error. Compare this with the a posteriori error; the error 
calculated after the filter is updated: 

 e(n)= d(n)-xT(n)wn 

It means that we found the correction factor as  

Δwn-1 =g(n)α(n) 
This intuitively satisfying result indicates that the correction factor is directly proportional to both the error 

and the gain vector, which controls how much sensitivity is desired, through the weighting factor ƛ. 
The RLS algorithm for pth order RLS filter can be summarized as follows. 
Parameters: 
 p=Filter order 

ƛ=Forgetting factor 
ẟ=Value to initialize P(0) 
Initialization: 
 w(n)=0; 

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://en.wikipedia.org/wiki/A_posteriori


 

 

x(k)=0   for k=-p, ….-1 
d(k)=0   for k=-p, ….-1 
P(0)= ẟI where I is the identity matrix of rank p+1 

Computation for n=1,2,…. 

x(n)=[x(n),x(n-1),…x(n-p)]T 

α(n)=d(n)-xT(n)w(n-1) 

P(n)=P(n-1)x(n){ƛ+xT(n)P(n-1)x(n)}-1 

P(n)= ƛ-1P(n-1)-g(n)xT(n) ƛ-1P(n-1) 

 w(n)=w(n-1)+ α(n)g(n) 

The recursion for P(n) follows algebraic Riccati equation and thus draws parallel to Kalman filter. 

 

 

Unit-V 

Multirate and Wavelet transform 

Basics of Multirate 

Multirate simply means “multiple sampling rates”. A multirate DSP system uses multiple sampling rates 

within the system. Whenever a signal at one rate has to be used by a system that expects a different rate, 

the rate has to be increased or decreased, and some processing is required to do so. Therefore “Multirate 

DSP” really refers to the art or science of changing sampling rates. The most immediate reason is when you 

need to pass data between two systems which use incompatible sampling rates. For example, professional audio 

systems use 48 kHz rate, but consumer CD players use 44.1 kHz; when audio professionals transfer their recorded 

music to CDs, they need to do a rate conversion. But the most common reason is that multirate DSP can greatly 

increase processing efficiency (even by orders of magnitude!), which reduces DSP system cost. This makes the 

subject of multirate DSP vital to all professional DSP practitioners. 

Multirate consists of: 

1. Decimation: To decrease the sampling rate, 

2. Interpolation: To increase the sampling rate, or, 

3. Resampling: To combine decimation and interpolation in order to change the sampling rate by 

a fractional value that can be expressed as a ratio. For example, to resample by a factor of 1.5, 

you just interpolate by a factor of 3 then decimate by a factor of 2 (to change the sampling rate 

by a factor of 3/2=1.5.) 

Multirate Digital Signal Processing 

1.Introduction 

Multirate systems have gained popularity since the early 1980s and they are commonly used for audio 

and video processing, communications systems, and transform analysis to name but a few. In most 

applications multirate systems are used to improve the performance, or for increased computational 

efficiency. The two basic operations in a multirate system are decreasing (decimation) and increasing 

(interpolation) the sampling-rate of a signal. Multirate systems are sometimes used for sampling-rate 

conversion, which involves both decimation and interpolation. 
 
 

 



 

 

2.Decimation 

Decimation can be regarded as the discrete-time counterpart of sampling. Whereas in sampling we 

start with a continuous-time signal x(t) and convert it into a sequence of samples x[n], in decimation 

we start with a discrete-time signal x[n] and convert it into another discrete-time signal y[n], which 

consists of sub-samples of x[n]. Thus, the formal definition of M-fold decimation, or down-sampling, 

is defined by Equation 1 In decimation, the sampling rate is reduced from Fs to Fs/M by discarding M 

– 1 samples for every M samples in the original sequence. 
 



y[n]  v[nM ]  ∑ h[k]x[nM  k] 

k 


(1) 

 

 

Fs Fs/M 

 

Figure 1. Block diagram notation of decimation, by a factor of M. 

 
The block diagram notation of the decimation process is depicted in Figure.1. An anti-aliasing digital 

filter precedes the down-sampler to prevent aliasing from occurring, due to the lower sampling rate. 

The subject of aliasing in decimated signals is covered in more detail in Section 4. In Figure .2 below, 

it illustrates the concept of 3-fold decimation i.e. M = 3. Here, the samples of x[n] corresponding to n 

= …, -2, 1, 4,… and n = …, -1, 2, 5,… are lost in the decimation process. In general, the samples of 

x[n] corresponding to n  kM, where k is an integer, are discarded in M-fold decimation. In Figure.2 

(b), it shows samples of the decimated signal y[n] spaced three times wider than the samples of x[n]. 

This is not a coincidence. In real time, the decimated signal appears at a slower rate than that of the 

original signal by a factor of M. If the sampling frequency of x[n] is Fs, then that of y[n] is Fs/M. 

3. Interpolation 

Interpolation is the exact opposite of decimation. It is an information preserving operation, in that all 

samples of x[n] are present in the expanded signal y[n]. The mathematical definition of L-fold 

interpolation is defined by Equation 2. and the block diagram notation is depicted in Figure .3. 

Interpolation works by inserting (L–1) zero-valued samples for each input sample. The sampling rate 

therefore increases from Fs to LFs. With reference to Figure .3, the expansion process is followed by 

a unique digital low-pass filter called an anti-imaging filter. Although the expansion process does not 

cause aliasing in the interpolated signal, it does however yield undesirable replicas in the signal’s 

frequency spectrum. We shall see how this special filter, in Section 9.4, is necessary to remove these 

replicas from the frequency spectrum. 
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Where w(n)=x(n/L) if L is an integer 

                    =0 if L is non integer 

 

 Figure .4 below, it depicts 3-fold interpolation of the signal x[n] i.e. L = 3. The insertion of zeros 

effectively attenuates the signal by L, so the output of the anti-imaging filter must be multiplied by L, 

to maintain the same signal magnitude. 
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Figure 2. Decimation of a discrete-time signal by a factor of 3. 
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Figure 3. Block diagram notation of interpolation, by a factor of L. 

 

 
4. Frequency Transforms of Decimated and Expanded Sequences 

The analysis of decimation and expansion is better understood by assessing their respective frequency 

spectrums using the Fourier transform. 

 
i. Decimation 

The implications of aliasing caused by decimation are very similar to those in the case of sampling a 

continuous-time signal.  In general, if the Fourier transform of a signal, X( ), occupies the entire 

bandwidth from [- , ], then the Fourier transform of the decimated signal, X( M)( ), will be aliased. 

This is due to the superposition of the M shifted and frequency-scaled transforms. This is illustrated 

in Figure .5 below, which shows the aliasing phenomenon for M = 3. 
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Figure 4. Interpolation of a discrete-time signal by a factor of 3. 

 

 

 
 

 

 

 

 

 

Figure .5: Aliasing caused by decimation; (a) Fourier transform of the original signal; (b) After decimation filtering; 

(c) Fourier transform of the decimated signal. 

In Figure .5 (a) it shows the Fourier transform of the original signal. Part (b) shows the signal after 

lowpass filtering.  In Figure .5 (c), it depicts the expanded spectrum after decimation. 

 

Expansion 

The effect of expansion on a signal in the frequency domain is illustrated in Figure .6 below. Part (a) 
shows the Fourier transform of the original signal; part (b) illustrates the Fourier transform of the 
signal with zeros added W( ); and part 

(c) shows the Fourier transform of the signal after the interpolation filter. It is clearly visible that the 

shape of the Fourier transform is compressed by a factor L in the frequency axis and is also repeated 

L times in the range of [- , ]. Despite the compression of the signal in the frequency axis, the shape 

of the Fourier transform is still preserved, confirming that expansion does not lead to aliasing. These 

replicas are removed by a digital low-pass filter called an anti-imaging filter, as indicated in Figure 

.3. 
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Figure 6.  Expansion in the frequency domain of the original signal (a) and the expanded signal (b). 

 

 
b. Sampling-rate Conversion 

A common use of multirate signal processing is for sampling-rate conversion. Suppose a digital signal 

x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled at an interval T2. Then 

the techniques of decimation and interpolation enable this operation, providing the ratio T1/T2 is a 

rational number i.e. L/M. 

Sampling-rate conversion can be accomplished by L-fold expansion, followed by low-pass filtering 

and then M-fold decimation, as depicted in Figure .7. It is important to emphasis that the interpolation 

should be performed first and decimation second, to preserve the desired spectral characteristics of 

x[n]. Furthermore by cascading the two in this manner, both of the filters can be combined into one 

single low-pass filter. 
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Figure 7: Sampling-rate conversion by expansion, filtering, and decimation. 

 

An example of sampling-rate conversion would take place when data from a CD is transferred onto 

a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To enable this process the non-

integer factor has to be approximated by a rational number: 
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Hence, the sampling-rate conversion is achieved by interpolating by L i.e. from 44.1 kHz to 

[44.1x160] = 7056 kHz. Then decimating by M i.e. from 7056 kHz to [7056/147] = 48 kHz. 
 
 

c. Multistage Approach 

When the sampling-rate changes are large, it is often better to perform the operation in multiple 

stages, where Mi(Li), an integer, is the factor for the stage i. 

M = M1M2…MI or L = L1L2…LI 

An example of the multistage approach for decimation is shown in Figure .8. The multistage 

approach allows a significant relaxation of the anti-alias and anti-imaging filters, with a 

consequent reduction in the filter complexity. The optimum number of stages is one that leads 

to the least computational effort in terms of either the multiplications per second (MPS), or the 

total storage requirement (TSR). 
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Figure.8: Multistage approach for the decimation process. 

d. Polyphase Filters 

Potential computational savings can be made within the process of decimation, interpolation, 

and sampling-rate conversion. Polyphase filters is the name given to certain realizations of 

multirate filtering operations, which facilitate computational savings in both hardware and 

software. As an example, the combined low-pass filter in the sampling-rate converter, as 

illustrated in Figure .7, can be re-drawn as a realization structure. In principle, the simplest 

realization of the low-pass filter is the direct-form FIR structure, as depicted in Figure .9. 

However, this type of structure is very inefficient owing to the interpolation process, which 

introduces (L–1) zeros between consecutive points in the signal. If L is large, then the majority 

of the signal components fed into the FIR filter are zero. As a result, most of the multiplications 

and additions are zero i.e. many pointless calculations. Furthermore, the decimation process 

itself implies that only one out of every M output samples is required at the output of the 

sampling-rate converter. Consequently, only one out of every M possible values at the output 

of the filter needs to be computed. This type of structure therefore, leads to much inefficiency 

during the process of sampling-rate conversion. A more efficient realization structure of the 

sampling-rate converter uses Polyphase filters, as illustrated in Figure 10. It takes into account 

that after the interpolation process the signal consists of (L–1) zero coefficients, and the 

decimation process implies that only one out of every M samples is required at the output of the 
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converter. To make the scheme more efficient, the low-pass filter in Figure .9 is replaced by a 

bank of filters arranged in parallel, as illustrated in the efficient realization. The sampling-rate 

conversion process is undertaken by the multiplexer at the output by selecting every MT/L 

samples. In this example, the efficient realization is illustrated for a signal which is interpolated 

by L = 3 and decimated by M = 2 samples. 
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Figure 9.  Realisation structure of sampling-rate conversion. 
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Figure 10. Efficient realisation structure for sampling-rate conversion. 

Sub band coding 
In signal processing, sub-band coding (SBC) is any form of transform coding that breaks a signal 

into a number of different frequency bands, typically by using a fast Fourier transform, and 

encodes each one independently. This decomposition is often the first step in data compression for 

audio and video signals. The utility of SBC is perhaps best illustrated with a specific example. 

When used for audio compression, SBC exploits auditory masking in the auditory system. Human 

ears are normally sensitive to a wide range of frequencies, but when a sufficiently loud signal is 

present at one frequency, the ear will not hear weaker signals at nearby frequencies. We say that 

the louder signal masks the softer ones. 

The basic idea of SBC is to enable a data reduction by discarding information about frequencies 

which are masked. The result differs from the original signal, but if the discarded information is 

chosen carefully, the difference will not be noticeable, or more importantly, objectionable.  

First, a digital filter bank divides the input signal spectrum into some number (e.g., 32) of 

subbands. The psychoacoustic model looks at the energy in each of these subbands, as well as in 

the original signal, and computes masking thresholds using psychoacoustic information. Each of 

the subband samples is quantized and encoded so as to keep the quantization noise below the 
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dynamically computed masking threshold. The final step is to format all these quantized samples 

into groups of data called frames, to facilitate eventual playback by a decoder. Decoding is much 

easier than encoding, since no psychoacoustic model is involved. The frames are unpacked, 

subband samples are decoded, and a frequency-time mapping reconstructs an output audio signal.  

 

 
                              Fig. 11. Sub band coding of audio signal 
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